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Ahatract-Density variations in a fluid flowing in a heated horizontal tube can cause a secondary flow as 
well as variations in the axial pressure gradient over the tube cross section. The effect of the secondary flow 
on the temperature field and the primary flow at the outlet of a long electrically heated tube having thick 
walls of high conductivity is analyzed for the case of large Grashof-Prandtl number for which a thin 
temperature boundary layer exists near the wall A model for the flow field is developed which is consistent 
with the experimental observation that over most of the tube the isotherms am horizontal. By dimensional 
reasoning it is found that the secondary flow controls the rate of heat transfer. For P = 1 the primary flow 
also shows a boundary layer behavior while for P -+ co the primary flow is independent of the secondary 
flow. For constant viscosity and infinite Prandtl number, the Nusselt number is directly proportional to 
the fourth root of the product of the Grashof and the Prandtl number. 

N = C, (GP)* 

By integral methods it is estimated that C, = 0471. Good agreement is obtained between calculations based 
on the proposed model and experiment. 

NOMENCLATURE 

tube radius ; 
heat capacity of the fluid ; 
= N/(GP)*; 
= fR/(GP)*; 
Fanning friction factor; 
acceleration of gravity; 

Grashof number = a3Bg?2AT: 

heat-transfer coefficient = q/AT; 
thermal conductivity of the fluid ; 

* Presently with General Electric Company, San Jose, 
California. 

t Presently with Space Division, Chrysler Corporation, 
Huntsville, Alabama. 

$ Presently with Gulf Research and Development Com- 
pany, Pittsburgh, Pennsylvania. 

N 

p, 
PO, 

PI: 

p, 

4, 

R 

Nusselt number = &; 

pressure ; 
pressure at the inlet to the heated 
section ; 
=P-P,; 

Prandtl number = $; 

rate of heat transfer to the fluid per 
unit area ; 

Reynolds number = 4 W>p -: 

=p @@p ( > -; 
P 

temperature of the fluid; 
temperature at the inlet; 
bulk averaged temperature ; 

1535 



D. P. SIEGWARTH, R. D. MIKESELL, T. C. READAL and T. J. HANRATTY 

temperature at the wall ; 
temperature in the core; 
= T, - TB; 
velocity in the X-direction ; 
characteristic X-velocity in the 
thermal boundary layer; 

(P)+/(G)” ; 

characteristic velocity for the secon- 
dary flow in the core of the tube; 
= WI@; 
velocity in the Y-direction; 
characteristic velocity for the thermal 
boundary layer in the Y-direction ; 
= v-p; 

P)+/Wf ; 

bulk averaged velocity; 
velocity in the Z-direction; 

= WKW; 
core coordinate in the vertical di- 
rection, boundary layer coordinate 
in the circumferential direction; 
dimensionless core coordinate = X/a; 
dimensionless boundary coordinate 
= X/a; 
core coordinate in the horizontal 
direction, boundary layer coordinate 
perpendicular to the wall; 
dimensionless core coordinate = Y/a ; 
dimensionless boundary coordinate 
= Y( GP)t/a ; 
coordinate in the axial direction ; 
= Z/a. 

Greek symbols 

B? coefficient of thermal expansion ; 

6 T, normalization parameter for the ther- 
mal boundary layer = a(PG)-” ; 

6 h? normalization parameter for the 
hydrodynamic boundary layer ; 

A TI thickness of the thermal boundary 
layer ; 

AT+, = AT/ST; 
angle measured from the bottom of 
the tube; 
viscosity ; 
density ; 
density evaluated at To ; 

T- TB. dimensionless temperature = ---, 

AT 

T, - Ts. 
AT ’ 

stream function. 

1. INTRODUCTION 
THE CALCULATION of the rate of heat transfer 
to a fluid flowing laminarly in a heated hori- 
zontal tube is complicated because the flow 
pattern is affected by the variation of fluid 
properties with temperature. Yang [l] has 
shown that viscosity variations cause the heat 
transfer rate to change by as much as fifty per 
cent from the prediction of Graetz [2] for a 
undirectional parabolic flow. The recent corre- 
lation of heat-transfer measurements by Oliver 
[3] indicates that the neglect of density variations 
in the solution of Yang can be serious for fluids 
of low viscosity for which the heat transfer rate 
can be larger than the results obtained by Graetz 
by a factor of three to four. 

Density variation in a heated fluid causes a 
secondary motion that is symmetric about a 
vertical plane passed through the axis of the 
tube to be superimposed on the primary flow 
in the direction of the tube axis. This secondary 
motion can not only directly increase the rate 
of heat transfer but also can distort the parabolic 
velocity profile that would exist for isothermal 
flow. Additional changes in the axial velocity 
profiles can occur because changes of the average 
density in the axial direction are accompanied 
by a variation of the axial pressure gradient over 
the cross section of the tube. In fact, if the axial 
density gradient is large enough the fluid in the 
top part of the tube will flow backwards for 



EFFECT OF SECONDARY FLOW ON THE TEMPERATURE FIELD 1537 

heating [4]. This paper is concerned with 
obtaining an understanding of the effect of the 
secondary flow on the temperature field and the 
primary velocity field 

The system considered is the outlet of a long 
electrically heated tube having a thick wall 
of high conductivity. The magnitudes of the 
secondary velocities increase with an increase in 
the difference between the wall temperature and 
the bulk averaged temperatue, to be designated 
as AT If the heat transfer were carried out using 
a wall with a constant temperature as might be 
done by circulating a heat transfer medium in a 
jacket surrounding the tube, AT would change 
along the length of the tube. A tube heated 
electrically so that the heat flux per unit length, 
4, is constant is more suitable to consider the 
effects of secondary flow since a fully developed 
condition is approximated downstream for 
which the bulk temperature of the fluid, TB and 
the wall temperature, T,, are increasing linearly 
with distance downstream and for which AT is 
constant. A thick walled tube of high conductivity 
provides a good conductive path so that the 
temperature of the inner wall will not vary 
around the circumference at any axial location. 

The fluid enters the heat transfer section with a 
temperature To and a bulk averaged velocity 
( W). One may consider that either q or A Tare 
known at some location where the temperature 
field is fully developed. The viewpoint in this 
paper is that ATis given. It is desired to calculate 
the axial velocity profile, the temperature 
profile, the heat flux and the pressure drop. The 
bulk averaged temperature TB can be related 
to 4 and ( W) by using an overall energy balance. 
Despite the simplifications that result from this 
particular statement of the problem, the four 
coupled partial differential equations that define 
the system are far too complicated to obtain any 
general solutions. It seems necessary to develop 
models for the secondary flow field so that the 
equations can be simplified. This, then, is the 
principal goal of this paper. 

In order to focus upon the effect of the 
secondary flow the variation of fluid viscosity 

will be ignored. The dimensionless groups 
defining the fully developed flow of a fluid of 
constant viscosity in an electrically heated pipe 
are the Reynolds number R, the Grashof 
number, G, the Prandtl number, P, the Nusselt 
number, N, and the Fanning friction factor, 
f, where R, G and N use the tube radius a and 
G uses the temperature difference AT. Morton 
[S] neglected axial density gradients and ob- 
tained a perturbation solution for the tempera- 
ture and velocity field valid for small values of 
NG/R. E. de1 Casal and Gill [6] included 
effects of both the axial density variation and of 
the secondary flow in their perturbation solution 
valid for small values of NG/PR’. Both of 
these schemes are limited to very small values 
of the heating rate. In order to deal with natural 
convection effects of the magnitude indicated by 
the correlation of Oliver [3] it is necessary to 
seek a solution valid for large values of the 
product GP, yet not so large that the flow is un- 
stable. Temperature measurements [7], [4] and 
[8] and dimensional reasoning indicate that a 
thin temperature boundary layer exists near the 
wall for large GP. That portion of the fluid 
external to this boundary layer will be called 
the core. By considering the core and the 
boundary layer separately two sets of equations 
which are much simpler than the original 
equations are obtained. This boundary layer 
problem is different from that usually en- 
countered in that the conditions of the external 
flow, the core, are not given a priori but are 
related to the flow in the boundary layer. The 
central problems to be faced are to define the 
conditions in the core and to discover how the 
core and boundary layer solutions are coupled. 

The effect of the temperature field on the 
flow depends strongly on the value of P ; and 
therefore, two conditions will be considered, 
P = 1 and P -+ cc. It will be shown for P = 1 
that the secondary motion produces a boundary 
layer behavior in the primary flow similar to 
that for the temperature field, while for P + co 
the secondary flow has no effect on the primary 
flow. 
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In the development of the flow model use is 
made of the experimental observation [7], [lr] 
and [8] that the isotherms in the core are per- 
pendicular to the direction of gravity. As a conse- 
quence one expects that for P = 1 the secondary 
motion has a large upward flow close to the 
wall and a relatively small downward velocity 
in the core. For P + cg horizontal isotherms 
seem consistent either with large or small 
fluid velocities in the core, and it is necessary 
to look at the variation of the temperature in the 
vertical direction to decide on a flow model for 
the core. 

2. EQUATIONS FOR THE FULLY DEVELOPED 
REGION OF AN ELECTRICALLY HEATED 

HORIZONTAL TURE 

The equations for the fully developed region 
of an electrically heated horizontal tube of 
radius a will now be developed. An X, Y, Z 
coordinate system will be used with the origin 
at the center of the pipe, the X-coordinate in 
the vertical direction, and the Z-coordinate in 
the direction of flow. Since the flow is fully 
developed none of the velocity components are 
changing in the Z-direction. The difference 
between the bulk averaged temperature at any 
cross section and the inlet temperature is given 
as 

TB - To = 
2qz 

poca<W)’ 

Add T to both sides of (1). Then 

T-T,= 
2qz 

hCa<W 
+ (T - TB) (2) 

where (T - TB) is a function of X and Y and 
not of Z. The usual approximation that the 
effect of density variations is manifested in the 
buoyancy terms and not in the inertia terms 
is also made. The density is assumed to vary 
linearly with temperature 

; = 1 - /l(T - To) 

or after substituting (2) 

(3) 

P -=1-B 2qz 
PO poCa< W> 

+T-T,. 

> 
(4) 

The pressure will be taken as the sum of a 
static pressure at the entrance to the heat 
transfer section PO, and a remainder pressure 
P,. Since the fluid is assumed to be isothermal 
at the entrance 

1 aP, 
o=-zm-g 

*=_Lp". 
p. ay 

(5) 

The velocities in the X and Y directions will be 
made dimensionless with respect to a velocity 4?, 
as yet unknown, and the velocity in the Z 
direction, with respect to ( W). A dimensionless 
temperature will be defined as 

T - T, 
4=-.---- 

T, - TB’ 

The coordinates are normalized by the radius 
of the pipe. 

The dimensionless form of the energy equa- 
tion is 

(6) 

where 

v*=$+” and W=P 
w 

Since we are looking for a solution for which a 
temperature boundary layer exists the terms on 
the left-hand side of (6) representing the ccn- 
vection of heat by the secondary flow must b? 
large compared to the terms representing the 
conduction of heat everywhere except in a 
very small region close to the wall. We will 
therefore be looking for a solution for which 
W is a large number. The dimensionless group 
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5e is a Pkclet number defined in terms of the 
characteristic velocity in the core. It is not 
independent but is related to the dimensionless 
groups defined in the Introduction. 

The d~ensionle~ form of the Z-momentum 
equation is 

+ $e2w, (7) 

The behavior of the solution of this equation for 
large W depends on the value of P. For P = 1 
it is seen that the equation for w is similar to 
that for C$ and one can expect a solution of the 
boundary layer type. For P/g -+ co the convec- 
tive terms on the left side of the equation will 
be negligible compared to the viscous terms. 
One concludes that for P/B + co the secondary 
flow does not affect the velocity field in the 
Z-direction. 

The secondary flow is described by the 
equations 

(10) 
where h is the heat-transfer coeIlicient defined as 
q/VT. Since the equation of conservation of 
mass (8) is two-dimensional, a stream function 
can be defined for the secondary flow. The 
equation for this stream function can be ob- 
tained by eliminating the pressure between 
(9) and (10) 

The experimental observation that @/ay --) 0 
over most of the flow field implies that the 
coefficient GP/912 is of larger order than the 
coefficients in front of the other two terms. 
Later it will be shown that for a core with small 
velocities W = (GP)* and therefore that 
GP/,#* = (GP)! For a core with large velo- 
cities W = (GP)* and GP/,t#e2 = 1. For P = 1 
the assumption of large return velocities is 
inconsistent with the observation that over 
most of the flow field the isotherms are horizon- 
tal. Nowever for P -+ co either estimate for W 
implies that &play -+ 0. 

From equation (9) one concludes that if the 
isotherms are horizontal over most of the flow 
field the pressure changes are primarily hydro- 
static and not affected by the secondary flow. 
The viscous terms are of the same magnitude 
as the buoyancy terms only in very thin regions 
where the velocity gradients can be quite large. 
It is of interest to note that the ratio of the 
inertia to the viscous terms for large W depends 
on the ma~itude of P. For P = 1 the inertia 
terms will be larger than the viscous terms over 
most of the flow field except for a viscous 
boundary layer close to the Walt For P/&I? + co 
the convective terms are small compared to 
the viscous terms over the whole cross section 
of the pipe and there is no region where viscous 
terms are of the same magnitude as the inertia 
terms. This result is in contrast to what is 
found for a heated vertical plate [9]. The 
reason for this is that the extent of the flow field 
for the heated horizontal tube is fixed to that 
of the tube radius while the heated vertical 
plate has a field of infinite extent to accommo- 
date the boundary layer. As P/B -+ co it is 
necessary that the velocity boundary layer 
cover a region that is much larger than the tube 
radius in order that the inertia terms be im- 
portant. 
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As can be seen from (11) the term 3. BOUNDARY LAYER EQUATIONS 
2zh/(c(~)p,), that appears in (9) because of 
density variations in the Z-direction, does not 

In order to treat the boundary layer flow 

have a direct effect on the secondary flow. It 
near the wall a coordinate system will be used 

only causes the pressure gradient in the direc- 
with the X-axis tangent to the pipe wall the 

tion of mean flow to vary over the tube cross 
Y-axis perpendicular to the wall and the 

section. The importance of axial density varia- 
Z-axis in the direction of mean flow. The usual 

tions can be estimated by differentiating (9) 
boundary layer assumption is made that the 

with respect to Z to obtain 
pressure gradient in the X-direction is indepen- 
dent of Y so that the pressure in the boundary 

a2 a2P, NG layer equals the pressure in the core evaluated 

PP,~? azax 
--= 2,FR. (12) at the wall. Since pressure variations in the 

core are hydrostatic, 
If (7) is differentiated with respect to x and (12) 
is substituted into the resulting equation, it is apI -= 
found that 

ax PO/MT - TB) sina + x s)sin-$ (16) 

The buoyancy and pressure gradient terms in 
the X-momentum equation are therefore 

=- 2 NG P$Jjj + ;;(v+). (13) - 2 + p&q(T - T,)sh$ 
By examining (13) it is seen that the following + 2Zq/% 
criteria are established for neglecting density 

----sin”= P&(T - T,)sin:. 
at(W) a 

(17) 

variations The boundary layer equations may be written 

2NG as follows : 
*+1 for P-+cc 

(14) 
g+gzo (18) 

2NG 
Rzj<l for P=l. 

au au x 
It is to be noted that the axial density variation 

Udx + VE = Bg(T - T,)sin; 

becomes particularly important for small R ; 
i.e. for small throughputs. From (14) we conclude 

+Ei;2u 
the effect may be neglected for P -+ co. It will 

PO ay2 (19) 

be shown later that N = C,W for P = 1. We p a2w 
conclude that axial density gradients could be 

ug+v!$= _lap,+__ 
p. az p. ay2 (20) 

having some effect for P = 1. 
By differentiating (10) with respect to Z we dT aT 2q 

find that i?PJdZ is not a function of Y. Equation ‘Xi!+ “E+ w poca(W) 
= -+ (21) 

o 

(12) can therefore be integrated to obtain The thermal boundary layer thickness will 

a ap, a ap1 2NGP 
be assumed of order &.. The characteristic 

- az -* az +WZRx 0 w length and velocity in the X-direction will be 
taken as a and 4+. The characteristic velocity 
in the Y-direction is then obtained from the 

where (aP,/aZ) is the average value of aP,/aZ continuity equation as (&/a)%+. The charac- 
over the cross section. teristic velocity Qf and characteristic length 
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8r can be evaluated by assuming that in the 
thermal boundary layer the viscous and buoy- 
ancy terms in the X-momentum equation and 
convection and conduction terms in the energy 
equation are of the same magnitude 

8T = a(pG)-+ 

4+= Ir p,a W’)+ 

Y+ = --$ G/p3)+ 

(22) 

The dimensionless forms of the energy balance 
and the boundary conditions on 4 are 

+ 84 + a+ WN 
u ax++v ay’+ 

a24 
(W)(GP)+ = ay+z 

(23) 

d=l at y+=O 

4=4, - at large y + 

The heat flux to the wall and therefore the 
Nusselt number can be evaluated as follows : 

N = C,(PG)* (25) 

dx+ (26) 

It will be shown later for P = 1 that W/(W) is 
of order unity and N is of order G* so that 
(W/( W))N is of order G*. Since W is not 
influenced by the secondary flow for P/98 + co 
the order of W/(W) in the thermal boundary 
layer is estimated as 6,/a. The Nusselt number 
is of order a& so for P/B + co, (W/(W))N is 
of order unity. Therefore, as PG + co the term 
involving the convection of heat in the Z-direc- 
tion becomes negligibly small in the thermal 
boundary layer, and it is concluded that the 
secondary flow controls the rate of heat transfer. 
The constant C1 appearing in (25) in general is 
a function of the parameters of the problem 
It will be a constant of order unity if 4 is only 
a function of x+ and y+. . This requires that 
u + and u + in the thermal boundary layer and 
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the dimensionless core temperature evaluated 
at the wall, 4, be independent of the parameters 
of the problem This will be shown to be the 
case for P/a 4 co if the effect of axial density 
variation can be neglected. 

Before considering the equations for u+ and 
u+ it is necessary to make some general com- 
ments about the secondary flow. By using the 
same type of reasoning as for the heated vertical 
plate [9] it can be shown that if a region exists 
in whikh the inertia and viscous terms are of 
the same magnitude its extent, 6, is given as 
(&@,.) = Pg. For P= 1 the ratio (SJS,) = 1 
and as shown in the previous section inertia 
terms dominate over the viscous terms in the 
core. One concludes that for P = 1 the boundary 
layer is a region where viscous, buoyancy and 
inertia terms are of the same magnitude. In the 
outer region of the boundary layer, inertia 
terms dominate since it is necessary to match the 
boundary layer and core behaviors. 

Now let us consider the case of P 4 03 for a 
fixed large value of PG, or, according to (22), a 
fured small value of (&./a). A region in which 
the viscous and inertia forces are of the same 
magnitude would have to be larger than the 
pipe radius. Clearly this is impossible so the 
flow at the edge of the thermal boundary layer 
must be matched to a flow in the core in which 
viscous forces dominate over inertia forces. 
From (28) it can be seen for P/W + 00 that 
a2u+lay+2 = 0 in the matching region. The 
velocity gradient in the matching region is of 
order unity when normalized with respect to 
core parameters Q and Q, i.e. du/dy is of order 
unity. The following relation may be written 
for the matching region 

The ratio %I@’ is of order unity or less. Since 
au/ay is of order unity and since &./a 4 0, it 
follows that au +/ay + -+ 0 in the matching 
region. Therefore as P/&g + co the inflection 
point in the u+ velocity profile that corresponds 



to the “edge” of the temperature boundary 
layer must be approaching either a maximum 
or a minimum in the secondary flow. If it 
is approaching a maximum then there is a 
large return flow in the core. If it is approaching 
a minimum the velocities in the return flow are 
much smaller than in the upward flow near the 
wall. In contrast to the heated vertical plate 
more than one inflection point can exist in the 
velocity profile in the heated tube because of the 
return flow in the core. It will be assumed that 
the flow is simple enough that no more than 
two inflections can exist. If there is only one 
inflection, the matching region will approach 
the maximum velocity as P/9? -+ 00 as indicated 
in Fig. 1. The extent and velocity of the upward 
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FIG. 2. Velocity and temperature profiles for a heated 
horizontal tube having a small return flow in the core. 

Prandtl number is large. 

as P/S -+ co. The upward moving flow would 
be confined to the thermal boundary layer 
and therefore the return flow must occupy a 
greater portion of the tube and have a much 
smaller velocity than the upward flow. 

If (22) is used to normalize the boundary 
layer equations describing the secondary flow, 
(18) and (19), the equations and boundary 
conditions become 

Y- 

\ 

au+ at>+ 
x’+t=O ay 

1 
- 
P ( 

u 
+ au+ 

FIG. 1. Velocity and temperature profiles for a heated 
ax+ + V+ $ = (4 -- &sin x* 

1 
horizontal tube having a large return flow in the core. 

Prandtl number is large. 

(27) 

a%+ 
+ ay+2 

(28) 

moving flow and return would then be of the u+ = v+ = O,d=l at y+=O 
same magnitude. Figure 2 shows that the (2% 
matching region would be near the minimum 4 = 4% at large y + 

if two inflections exist in the velocity profile. 
The inflection point would approach the mini- If the upflow is confined to the thermal boundary 
mum, and the minimum would approach zero laver. it is appropriate to assume u + = 0 at large _ _ _ _ 
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y+ since for large GP the return velocities will 
be negligible compared to the boundary layer 
velocities. For a profile at P/B 4 co, which 
would have a large return flow, it is appropriate 
to apply (28) only within the thermal boundary 
layer since the rest of the flow would not be of 
the boundary layer type. The boundary condi- 
tion would then be U+ is a maximum at large 
y+. For P/9t + co the inertia terms in (28) are 
negligible and the differential equations and 
boundary conditions describing the variation 
of u + and u + within the thermal boundary layer 
contain no parameters of the problem provided 
4C is a function only of x+ and y+. 

The Fanning friction factor is defined as 

(33) 

so from (32) 

where 

To complete the discussion of the boundary 
layer equations the Z-momentum balance will 
now be treated. As was shown in the previous 
section viscous terms dominate for P/B.+ co 
and therefore, a boundary layer analysis is not 
appropriate. For P = 1 inertia terms dominate 
in the core and a boundary layer exists near the 
wall where the inertia and viscous terms are of 
the same magnitude. The velocity with which 
to normalize the W-term in the boundary 
layer is (IV). The dimensionless form of (20) 
is then given as 

c 
dx+. (35) 

0 
If (32) is substituted into (30) it is seen that the 
first term on the right side of (30) is negligible if 
the variation of aPl/aZ over the cross section 
due to axial density gradients is not much 
larger than (aP,/aZ). Then the equation des- 
cribing the variation of w + in the boundary 
layer is the same as the energy equation (23). 

4 CORE EQUATIONS 

Now that the parameterization of the boun- 
dary layer equations has been completed it is 
possible to return to the discussion of the equa- 
tions describing flow in the core. If the upflow is 
confined to the thermal boundary layer the 
characteristic velocity of the fluid in the core can 
be calculated by equating the mass flow in the 
thermal boundary layer, &.%!+, to the mass flow 
down in the core, a@ sin x+. 

a* ap, 
=--- 

p(GP)+ a2 

a*w+ 
+ ay+2 

w+ =o at y+=O 

w+ = WC at large y + 

(30) 

(31) 

The term w, is the solution of the equations 
describing the core flow evaluated at the wall. 
A force balance that equates the average axial 
pressure drop to the resisting force at the wall 
gives 

apI 0 -- 
az dx+. (32) 

0 
y+=o 

%! = -If_(G/Pa)+ 
UP0 

.@ = (GP)+. 
(36) 

If the extent of the regions of upflow and down- 
flow are the same, the characteristic velocity for 
the core is the same as that for the thermal 
boundary layer. 

4 = & (WY 

W = (GP)). 

(37) 

(38) 
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The secondary flow in the core is described by 
(11). The first term on the right side of this 

equation is the production of vorticity while 
the second is the diffusion of vorticity. For 
P = 1 and large GP the diffusion terms are 
small in comparison to the convection terms 
while for P/4e + co the diffusion terms dominate 
the convection terms. Even though &j/ay -+ 0, 
the production of vorticity cannot be neglected 
since the coefficient in front of a4//ay is large. 
The solution of (11) seems to require a knowledge 
of the variation of $J in the core to a high order 
of accuracy. It is not evident how to proceed 
with this solution. Fortunately the calculation 
of the boundary layer properties, the heat 
transfer rate and the first order variation of 4 in 
the core does not depend on a detailed knowledge 
of the stream function in the core. 

Since W is a large number, the equation for the 
variation of 4 in the core, (6), becomes 

a+ 84 2wN 
uax+vy= -7. (39) 

Making use of (25) and the observation that 
@lay --, 0 in the core 

a4 
Y%=- 

2wC,(GP)* 
w . WY 

For the case of large return flow %! is given by 
(37). Then (40) indicates @/ax + 0 and it is 
expected that the core is isothermal. That is, 
4, = 0. If the return flow in the core is small, 
Q is given by (36) and 

.cL -2wc 
ax 1’ (41) 

Since C, is a constant of order unity it is con- 
cluded from (41) that the variation of the core 
temperature in the vertical direction is of order 
unity if the upward flow is confined to a small 
region close to the wall. Since &$/ax is inde- 
pendent of y, (41) can be integrated over the 
cross section at a fixed value of x. 

J(1 --x2) 

s J(1 -x2) 

a4 
ax udy= -C, 

s 
w dy. (42) 

0 0 

A mass balance at any height in the pipe reveals 
that 

J(1 -x2) 
- j udy = auf dy+ = B+. (43) 

After substituting in (42) 

J(1 -x2) 

Jj+%, 
ax 1 s wdy. (44) 

0 

The above differential equation is dependent on 
the secondary flow in the core only insofar as it 
is affecting the integral involving w. Since the 
mixed average value of r$ in the core must equal 
zero, an integral condition on 4 can be given 
which has the same role as specifying a boundary 
condition for (44). 

1 J(l-3) 

j f w4dydx= 0. (45) 
-1 0 

For P/W -+ 00 equation 
to give 

w = 2(1 - x2 - y2) 

(7) can be integrated 

+ iS(l- x2 - y2) cos x &’ + y2). (46) 

If the effect of axial density gradients can be 
ignored, the second term on the right side of 
(41) is zero, and the variation of 4 in the core is 
independent of the secondary flow and of the 
parameters of the problem. 

For P & GP the viscous terms in (7) may be 
neglected and if (15), (32) and (35) are substituted 

C,W3 2NG = 
w -ggjX. (47) 
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ForP = 1 

Since the variation of u and u in the core is not 
known, it seems best at present to rely on 
experiment to determine an approximate solu- 
tion to (48). The experiments of Y. Mori and 
his co-workers [7] suggest that for P = 1 
aw/ay --, 0 in the core. This is not surprising 
since (48) and (39) are quite similar. It follows 
that w may be approximated by 

g+!!L 
ax 

-J(l -X2) ($+j. (49) 

Since the average value of w equals unity the 
following integral condition can be established : 

-1 J(l~Xz’wdydx = 1. (50) 

5. STATEMENT OF BOUNDARY LAYER 
PROBLEM, P/B + cc 

The equations developed in the previous 
sections relating to the solutions of the boundary 
layer problem will now be summarized for 
P/LB + cc and for the case of negligible effect of 
axial density gradients. It should be recalled that 
x and y are core coordinates that are aligned 
with the vertical and horizontal and which are 
made dimensionless with respect to the pipe 
radius. The term x+ is the boundary layer co- 
ordinate tangent to the wall. It is dimensionless 
with respect to a. The perpendicular distance 
from the wall made dimensionless with respect 
to 67 = u(PG)-* is designated by yf. The 
coordinates x+ and x are related as follows: 

x= - cos x+. (51) 

No boundary layer solution is needed to d&me 
the variation of the Z-component of velocity for 
P/8 + co since it is unaffected by the secondary 
flow. 

w = 2(1 - x2 - y2). (52) 

The pressure drop is given by Poiseuille’s law. 
When the velocity boundary layer is confined 

to the thermal boundary layer as depicted in 
Fig. 2,theboundarylayerequationsareasfollows : 

+ a@ 84 a24 
u ,,,+o+,,,=,,,, (53) 

a~+ do+ 
ax++'=0 ay (27) 

$$+(4-&sinx+ =0 (54) 

u+ = v+ = 0, fj=l at y+=O 

u+ =o, 4 = 4, at large y +. (55) 

The core temperature evaluated at the wall, &, 
is given by the following equations : 

JCl-x2) 

,+?L, 
ax 1 

wdy (44) 

0 

B+ = j%+dy+ 
0 

(43) 

1 J(l-x’) 

j, 6 w&dydx=O. (45) 

The Nusselt number can be calculated from 
the solution of the above equations for the 
thermal boundary layer. 

N = C,(PG)* (25) 

1 z a4 
C, = - - + dx+ 

z s I ay y+=. 
(26) 

0 

Since no parameters of the problem appear in the 
differential equations and boundary conditions, 
it may be concluded that Cr is a number of order 
unity. The value of Cr is determined by solving 
the above equations This solution requires an 
iteration procedure. One possibility is to assume 
the function +Xx) and then solve (53), (27), (54) 
and (55). From this solution a new cb,(x) can 
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be calculated from (52), (44), (43) and (45) and 
the procedure is then repeated. 

Another method of iterating is initially to 
assume a value of C,. If the core temperature at 
x = 0 is used as the reference temperature, the 
boundary condition for (44) is c$, = 0 at x = 0. 
The differential equations for the temperature 
variation in the core and the boundary layer 
can then be solved simultaneously. After the 
solution has been completed, the reference 
tem~rature is calculated from (45) and a new 
value of C, from (26). The calculation is then 
repeated. 

If the regions of upward and downward flow 
are of the same magnitude as shown in Fig. 1, 
the core temperature Cp, is equal to zero. The 
defming differential equations for the thermal 
boundary layer are as follows 

+ atg a4 a24 
l4 Li.r++u+ay+=p (56) 

$+!L+=O 
dY+ 

(27) 

a221+ 

ayt2 
-kf#sinx+ ==O (57) 

u+ f= vf = 0, f&=1 at y+ = 0 (58) 

ad o 
&T=’ cp=o at large Y +. 

Again, since no parameters appear in the above 
set of differential equations, C1 is a constant of 
order unity. The value of C, will be the same as 
that calculated for a heated cylinder in a fluid of 
infinite extent. 

6. STATEMENT OF ROUNDARY LAYER 
PROBLEM, P = 1 

The bo~dary layer equations for P = 1 are as 
follows : 

(56) 

(59) 

+ 
!K+!!!c=() 

aY+ 
(27) 

=(# - &)sinx” + 
a2u+ 
&=Q (60) 

u+ z u+ =w=o, Q,=l at y+=O 

u+ =o, w = w,, 

4 = 4, at large Y+. (61) 

The equations describing w,(x) and (9,(x) are as 
as follows : 

jj+dw, 
ax = - J(1 - x2) c, - TX (49) 

B+ a#% 
-T& =C,w~(l - x”) (62) 

_j, w,&,,,‘(l - x2) dx = 0 (45) 

3 w,J(l - x2) dx = 1. (50) 

The above Guations are based on an approxi- 
mation, awday r 0, which is justified only by 
experimental observation. The equations for the 
Nusselt number and friction factor are 

(34) 

dx+ (35) 

N = C@ (25) 

ix a4 
cl=-- + s I x ay y+=. 

dx+. (26) 

0 

The coelficients C1 and C, can be calculated by 
solving the thermal boundary layer and core 
equations for 4 and w. The solution of these 
equations requires an iterative procedure where- 
by one initially either assumes wdx) and &(x) 
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or assumes C1 and CP If axial density gradients 
can be neglected, no parameters appear in the 
differential equations and boundary conditions 
defining w and 4, and Ci and C, am constants 
of order unity. 

7. UPROAR SOLUTION FOR P/B -+ a AND 
FOB NRGLlGIRLR JXFFEXT OF AXIAL DENSITY 

GRADIRNTS 

A solution will now be presented for P/g + co 
and for negligible effect of axial density gradients. 
Experiments by Siegwarth [S] with ethylene 
glycol showed a large variation of # in the core 
in the vertical direction. These results indicate 
that the equations developed for the case of 
small core velocities are the appropriate ones. 
These equations will be solved approximately 
in that only the integral form of (53) will be 
satisfied, 

(63) 

On the basis of the arguments presented 
follo~ng equation (Z6), the thickness of velocity 
boundary layer will be taken equal to the thick- 
ness of the thermal boundary layer. The following 
expressions for the velocity and temperature, 

u+ = - (1 - #@+%n x+ 

u+=o, #=l, 8’4 -=0 at y+=O 
iTy+2 

au+ &#I 
fd+=---~-----_O, #=&, 

ay+ ay* 
at yf = A’. (66) 

They will satisfy (63) if As is defined by the 
following differential equation : 

dd+ 
dx+= 

- OQO1694(1 - #c)2A+3cosx+ -i- 3(1 - 4,) d+ 1 
/OQO508(1 - (p3’d*‘sin x’. (67) 

The boundary condition for the solution of 
(67) is obtained by assuming symmetry. Aqua- 
tion (67) is solved at x+ = 0 using dd +/dx+ = 
d&/dx+ = 0 to obtain 

(1 - #)*A’ = 6.49 c at X+ =O. (68) 

From the definition of 4 and yi it follows from 
(25) that the local Nusselt number is [3(1 - Cp,)/ 
A ‘1 (GP)*. The constant C, appearing in (25) 
is therefore given as 

(69) 
0 

The dimensiontess volumetric flow in the boun- 
dary layer is calculated from (64) using the equa- 
tion 

3+ = “E’u+ dy+. 
0 

(70) 

+~(~)‘-~(~)~, 

Equations (52) and (70) are substituted into (44) 
(64) and the resulting differential equation is written 

in terms of boundary layer coordinates by 

4 = 1 - 3(1 - +& + 5(1 -43 ($)3 
using (51) to obtain the equation defining how 
di, varies with x’. 

- 3(1 - #J $ 
0 

4 

0@0595(1 - &))d+$$ 

(65) 
= ; C& - cos2 x+p. (71) 

satisfy (57) and the boundary conditions, 
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The integral condition (45) is used instead of a 
boundary condition for (71). 

Equations (67), (68), (69), (71) and (45) define 
Ci and the variation of A+ and +c with x+. 
An iteration procedure has been used to solve 
these equations on the computer [ll]. It is 
found that 

N = 0*471(GP)4 (72) 

The computed variation of B+, A+ and 4, with 
0 is shown in Table 1. It is to be noted that the 

T. C. READAL and T. J. HANRATTY 

Figs. 4 and 5 with the measurements made by 
Siegwarth [8] at (GP)* = 51.3 and P = 70.7. 
It is to be noted that the measured wall tem- 
peratures at the top and the bottom of the tube 
are not the same since the tube wall did not 
supply a good enough conductive path to 
equalize the temperature completely. 

In Fig 6 the calculated variation of the local 
Nusselt number around the circumference of 
the tube is compared with measurements of the 
temperature gradient at the wall obtained by 

Table 1. Results of calculations for P + cc 

X+ 8 

0 0 
0.200 11.46” 
0400 22.92 
0.600 34.38” 
0.800 45.85” 
1CQO 57.31” 
1.200 68.77” 
1400 80-23” 
1.600 91.69” 
1.800 103.15” 
2mO 114.61” 
2.200 126Q7” 
2.400 137.54” 
2600 149cw 
2.800 160.40” 
3000 171.92 
3.130 
3.140 

179.37 
179.94 

x A+ 9, 

-loo0 5.77 - 0.595 
- 0.980 5.17 - 0.595 
- 0.921 5.81 -0-591 
- 0.825 5.85 -0.576 
- 0.697 5.90 - 0.540 
- 0.540 5.94 - 0.476 
- 0.362 5.97 -0.376 
-0.170 5.98 -0.241 

0.029 5.99 -0.073 
0.227 6.01 0.121 
0.416 6.06 0.332 
0.588 6.20 0.543 
0.737 6.61 0,733 
0.857 7.73 0.863 
0.942 10.79 0.918 
@990 17.19 0.923 
1000 41.84 0,923 
1000 85.19 0,923 

dimensionless boundary layer thickness is rela- 
tively constant from 0 = 0” to 13 = 145”. After 
145” it increases rather rapidly. The shape of the 
velocity and temperature profiles predicted by 
the assumed relations (64) and (65) are shown in 
Fig. 3. It is to be noted that the temperature 
profile has a minimum at a value of y+/6+ less 
than unity. The measurements and computer 
solutions of Siegwarth [S] indicate a similar 
behavior over a large portion of the tube 
circumference. 

These calculations are in good agreement with 
results of experiments performed with ethylene 
glycol [g, 111. Calculated horizontal and verti- 
cal core temperature profiles are compared in 

B’ 

0 
0.362 
0.723 
1.062 
1.350 
1.498 
1.621 t ;fx 
1.560 
1,375 
1,104 
0,802 
0,524 
0.310 
0.187 
0.204 
0.328 
0.388 
0.450 

Siegwarth [S] at (GP)* = 51.3 and P = 70.7. 
The agreement is within the accuracy of the 
measurements. The local Nusselt number de- 
creases because of an increase in the thickness 
of the temperature boundary layer or because 
of a decrease in the temperature drop through 
the boundary layer brought about by changes in 
the core temperature. The change of the local 
heat-transfer rate can therefore be explained 
in terms of the calculated results in Table 1. 
The local heat transfer rate does not vary 
much from 8 = 0” to 8 = 60” because the 
boundary layer thickness and 4, are relatively 
constant over this region The decrease in the 
local heat transfer rate from 0 = 60” to 6 = 145” 
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-0.20 0.2 / 0.4 I 0,6 , 0.6 , I.0 1 

y+= Y/A’ 

FIG. 3. Temperature and velocity profde assumed for the 
boundary layer. 

0 Mcoturemanh 

--Colculoted profile 

a 

Distance from centerline, y’ V/b 

FIG. 4. Comparison of calculated and measured horizontal 
temperature profiles. 

appears to be mainly due to the large increase in 
(b, The decrease from 8 = 145” to 8 = 180“ is 
due to changes both in the boundary layer 
thickness and in 4, 

Measured values of the avetage heat transfer 
coefficient around the wall of the pipe made by 
Readal [ll) for NG/PR2 = O-14-+67 are com- 
pared with equation (72) in Fig 7. The physical 
properties are evaluated at the bulk averaged 
temperature of the fluid. This would be close 
to the average temperature in the boundary 
layer in the region from 0 = 8” to 8 = 60” 
where a large portion of the heat transfer 
occurs If the wall temperature had been used, 
the measurements fall as much as 15 per cent 
below the calculated line. 

8. CONCLUDING REMARKS 

The entire analysis presented in this paper is 

based on the assumption of the existence of a 
temperature boundary layer. Although a large 
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0 ~~surements 

Calculated core 

- temperatures 

0 ~~sur~en~ 

- Calculations 

8, degrees 

FIG. 6. Comparison of calculates and measured focal Nuss& 
numbers. 

Height , x=x/o (. 

FIG. 5. Comparison of calculated and measured core 
temperatures. 

I 
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Properties evaluated 
ot Bulk temperature 

I 1 , / I 
0 10 20 3 40 50 60 

IGroshof -Prandtl) (GPh 

FIG. 7. Comparison of calculated and measured Nusselt 
numbers. 

value of GP insures its existence over most of the 
circumference, it is possible that the boundary 
layer assumption breaks down at the top of 
the tube where T, - T, can be quite small. 
In this region the conduction of heat could be 
important in the core as well as close to the 
wall. However, it is not likely that this will 
cause any serious error in the calculation of the 
heat-transfer coefficient since as shown in Fig. 
6, the heat transferred to the fluid is relatively 
small at the top of the tube. 

A case where the non uniformity of the boun- 
dary layer solution could be more significant 
is that of a wall boundary condition of constant 
heat flux rather than constant temperature. If 
convection effects become small in the top of the 
tube, then a ve_ry large temperature gradient will 
exist in the top portion of the core in order to 
accommodate the heat flux. This large change 
in T, will be accompanied by an equally large 
variation in T, so T, - T, is small. 

The equations presented in this paper have 
been developed by using the experimental obser- 
vation that the temperature isotherms in the 
core are horizontal This implied that for P = 1 
the core velocities are relatively small and that 
for P + 4) they could be either small or large. 

The recent experiments by Siegwarth with ethyl- 
ene glycol showing a relatively large variation 
of core temperature in the vertical direction 
seem to rule out a solution for P -+ co with large 
core velocities. Therefore the equations might 
have been developed on the more restrictive 
condition of small core velocities. This reliance 
on experimental observation is not completely 
satisfactory, and it is desirable to develop 
theoretical arguments for assuming a particular 
flow condition in the core. 
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Rc&rnC-Les variations de la masse volumique d’un fluide s’boulant dans un tube horizontal chauffe 
peut provoquer un ecoulement secondaire ainso que des variations dam le gradient axial de pression a 
travers la section droite du tube. L’effet de l%coulement secondaire sur le champ de temperature et sur 
l’ecoulement primaire a la sortie d’un long tube chauffe electriquement ayant des parois tpaisses de con- 
ductiviti elev6e est analyst dans le cas d’un nombre de Grashof-Prandtl Be+, pour lequel il existe pres de 
la paroi une couche limite thermique mince. On expose un modele pour le champ d’ecoulement qui est 
coherent avec I’observation exp&imentale que les isothermes sont horizontales sur la plus grande longueur 
du tube. On trouve par un raisonnement dimensionnel que l’bcoulement secondaire controle le flux de 
chaleur. Pour P = 1, I’ecoulement prima& montre aussi un comportement de couche limite tandis que, 
pour P + co, l’ecoulement primaire est indtpendant de l%coulement secondaire. Pour une viscosite 
constante et un nombre de Prandtl intini, le nombre de Nusselt est directement proportionnel a la racine 
quatritme du produit de Grashof pour le nombre de Prandtl. 

N = C, (GP)* 

On a calcult par les mtthodes integrales que C, = 0,471. Un bon accord est obtenu entre les calculs bases 
sur le modele propose et I’exptrience. 

DER EINFLUSS VON SEKUNDjiRSTRijMUNGEN AUF DAS TEMPERATURFELD UND DIE 
PRIMARSTROMUNG IN EINEM BEHEIZTEN HORIZONTALEN ROHR. 

Zusammenfassung-Dichtelnderungen in einem Fluid, das durch ein beheiztes horizontales Rohr striimt, 
konnen sowohl Sekundarstriimungen als such Anderungen des axialen Druckgradienten tiber den Rohr- 
querschnitt verursachen. Der Einfluss der Sekundlrstriimung auf Temperaturfeld und Primgrstrijmung 
am Auslass eines langen elektrisch beheizten Rohres mit dicken Wanden hoher Leitfahigkeit wird unter- 
sucht ftir dem Fall grosser Grashof-Prandtl Zahlen, bei denen eine dtinne Temperaturgrenzschicht an 
der Wand existiert Es wird ein Model1 ftir das Stromungsfeld angenommen, das konsistent ist mit der 
experimentellen Beobachtung, dass nlmlich tiber den grossten Teil des Rohres die Isothermen horizontal 
verlaufen. Aus Dimensionsbetrachtungen ergibt sich, dass die SekundZirstriimung verantwortlich ist fur 
die Grdsse des Warmestroms Fiir P = 1 zeigt die Primlrstriimung Grenzschichtverhalten. wlhrend fur 
P + ‘~0 die PrimLrstrGmung von der Sekundarstromung abhLngt. Fur konstante Viskositat und sehr 
grosse Prandrlzahlen ist die Nusseltzahl direkt proportional der vierten Wurzel des Produkts aus Grashof- 
und Prandtlzahl. 

N = C,(G. P+ 

Aus integralen Losungsmethoden ergibt sich die Konstante zu C, = 0,471. Die Bercchnungen, denen das 
angenommene Model1 zugrunde liegt, stimmen sehr gut mit dem Experiment tibcrein. 

BJHIfIHHE BTOPIIYHOI’O TE’IEIIIIfI II.\ TEMIIEPATS’PI1C)E IlOJIE LI 
OCHOBHOH IIOTOH H lI:\I’PETOII I’OPB30IITAJIbHOII TP6GE 

AHHOTal(HJi-I'13MeHeHIIFI IlJIOTlIOcTII it~lI;lliOCTlI, T~HJYllefi R narpeuaenion rOpM3OHTaJIhHOti 

Tpy6e, MOryT RbIRBaTb BTOpHWUe TeYCHIIC, il TitlElie npHBO@T K II?MelIeHLlHM OceBOI'O 

rpaAkIelITa ~alrneIIm no ce~elmo TpyFbI. ~'lrraxrIs~ipy~TcsI Imcmme ~~0pliqlIUrO TcyelIm aa 

TeMnepaTypHoe nOjIe &I 0Cl10B~0& 110~01i IIa BbIxofir 11:: :Inlrlrl108 nJrrHTpwieclcII 06orpenarxoti 

TPY6H C TO;ICTbIMII CTeHfEaMLI ISLIcOKOti IlpOBO~~IMUc'TIl :(JIFI 6OJIblUOrO WC:Ia r~palIAT.nS 

Ppacroipa, 1iOrfla 116.%1311 CTeHmI Cy~ecTBycT Toal;llii TeMncpaTyplILIfi llorparrrl~lIrblik c;roit. 

Pa3pa6OTaHa Mone;rb 110x1 nOTOlia, COOTIWTCTR~IOLI~;III :)KCnepLIMellTanbIIO 06H~pyiI<eHflOM~ 

,@aKTy rOpII30HTaJlbHOCTII KiOTf'pM IIa ilO;rblIIeti 'iaCT Tpy6bI. MeToxonl pa3MeplIocTrii 

HatAeHo) 9TO BTOplI4HLIii IIOTOK PeryJlllpyeT IIHTCIICIIBHOcTb TerI;Ioo6xeHa. Ilp11 P r 
OCHOBHOti nOTOK 3aBHCIIT OT pa3BlITIVl nOr~l~lIWIIIOrO CJIOR, B TO RpeMfI Iiali IIpIr P 4 '1' ,111 

IIe 3aBIICLIT OT BTOpWIHOrO TeqeHHF1. flJIfI IIOCTUFlHHOfi BR3KOCTII &I 6ccr~oI~eslIol~o 'IH('.::~ 

npaHAT.7IJ-I WiCJIO HyccenbTa npFlM0 npOnOpl~I~UH~JILHO KOPHIO WTHCPTOti CTeIlf'II' II:: 

npoH3Be~emxn wcen rpacro$a Ii FIpaHfiTJIfI 

N = Cl(G P)’ 

&TerpaJIbHbIMH ~eTOJJar@lI o~eHt!lro 3HaqeHIIe c = 0,471. MeHcny UCtIOB~HHLIMII Ha 

npenxolttesnoti MoAenn pacseTaMs H 3IKrIepnMeKTaMII nonyqeH0 xopomee CooTBeTrTIxw. 


