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N = C, (GP}

Abstract—Density variations in a fluid flowing in a heated horizontal tube can cause a secondary flow as
well as variations in the axial pressure gradient over the tube cross section. The effect of the secondary flow
on the temperature field and the primary flow at the outlet of a long electrically heated tube having thick
walls of high conductivity is analyzed for the case of large Grashof-Prandtl number for which a thin
temperature boundary layer exists near the wall A model for the flow field is developed which is consistent
with the experimental observation that over most of the tube the isotherms are horizontal By dimensional
reasoning it is found that the secondary flow controls the rate of heat transfer. For P = 1 the primary flow
also shows a boundary layer behavior while for P — oo the primary flow is independent of the secondary
flow. For constant viscosity and infinite Prandtl number, the Nusselt number is directly proportional to
the fourth root of the product of the Grashof and the Prandtl number.

By integral methods it is estimated that C, = 0-471. Good agreement is obtained between calculations based

on the proposed model and experiment.
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pressure;
pressure at the inlet to the heated
section ;

=P — Py;

Prandt]l number = %;

rate of heat transfer to the fluid per
unit area;
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Reynolds number =
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temperature of the fluid;
temperature at the inlet;
bulk averaged temperature ;
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T,, temperature at the wall; Af, = Ay/Or;
T, temperature in the core; 0, angle measured from the bottom of
AT, =T, — Tg; the tube;
U, velocity in the X-direction; i, Viscosity ;
#*, characteristic X-velocity in the 2, density;
thermal boundary layer; Po» density evaluated at T, ;
aU . . T - T,
ut, =U/U" = (—u@) PY/AG); ¢, dimensionless temperature = B
AT
U, characteristic velocity for the secon- T.— T,
dary flow in the core of the tube; Pes . AT
u, =U/U,
V. velocity in the Y-direction; v, stream function.
v

characteristic velocity for the thermal
boundary layer in the Y-direction;
v, = V/u,

= (M) e,

bulk averaged velocity;

W, velocity in the Z-direction;

w, = WKW>;

X, core coordinate in the vertical di-
rection, boundary layer coordinate
in the circumferential direction;

X, dimensionless core coordinate = X/a;

x™, dimensionless boundary coordinate
= X/a,;

Y, core coordinate in the horizontal

direction, boundary layer coordinate
petpendicular to the wall;

¥ dimensionless core coordinate = Y/a;
y*,  dimensionless boundary coordinate
= Y(GP)¥/a;
Z, coordinate in the axial direction;
z, = Z/a.
Greek symbols
B, coefficient of thermal expansion;
Or, normalization parameter for the ther-

mal boundary layer = a(PG)™%;

O normalization parameter for the
hydrodynamic boundary layer;
A, thickness of the thermal boundary

layer;

1. INTRODUCTION

THE CALCULATION of the rate of heat transfer
to a fluid flowing laminarly in a heated hori-
zontal tube is complicated because the flow
pattern is affected by the variation of fluid
properties with temperature. Yang [1] has
shown that viscosity variations cause the heat
transfer rate to change by as much as fifty per
cent from the prediction of Giaetz [2] for a
undirectional parabolic flow. The recent corre-
lation of heat-transfer measurements by Oliver
[3]indicates that the neglect of density variations
in the solution of Yang can be serious for fluids
of low viscosity for which the heat transfer rate
can be larger than the results obtained by Graetz
by a factor of three to four.

Density variation in a heated fluid causes a
secondary motion that is symmetric about a
vertical plane passed through the axis of the
tube to be superimposed on the primary flow
in the direction of the tube axis. This secondary
motion can not only directly increase the rate
of heat transfer but also can distort the parabolic
velocity profile that would exist for isothermal
flow. Additional changes in the axial velocity
profiles can occur because changes of the average
density in the axial direction are accompanied
by a variation of the axial pressure gradient over
the cross section of the tube. In fact, if the axial
density gradient is large enough the fluid in the
top part of the tube will flow backwards for
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heating [4]. This paper is concerned with
obtaining an understanding of the effect of the
secondary flow on the temperature field and the
primary velocity field.

The system considered is the outlet of a long
electrically heated tube having a thick wall
of high conductivity. The magnitudes of the
secondary velocities increase with an increase in
the difference between the wall temperature and
the bulk averaged temperatue, to be designated
as AT If the heat transfer were carried out using
a wall with a constant temperature as might be
done by circulating a heat transfer medium in a
jacket surrounding the tube, AT would change
along the length of the tube. A tube heated
electrically so that the heat flux per unit length,
g, is constant is more suitable to consider the
effects of secondary flow since a fully developed
condition is approximated downstream for
which the bulk temperature of the fluid, Ty, and
the wall temperature, T,,, are increasing linearly
with distance downstream and for which AT is
constant. A thick walled tube of high conductivity
provides a good conductive path so that the
temperature of the inner wall will not vary
around the circumference at any axial location,

The fluid enters the heat transfer section with a
temperature T, and a bulk averaged velocity
{W>. One may consider that either g or AT are
known at some location where the temperature
field is fully developed. The viewpoint in this
paper is that ATis given. It is desired to calculate
the axial velocity profile, the temperature
profile, the heat flux and the pressure drop. The
bulk averaged temperature Ty can be related
to gand (W) by using an overall energy balance.
Despite the simplifications that result from this
particular statement of the problem, the four
coupled partial differential equations that define
the system are far too complicated to obtain any
general solutions. It seems necessary to develop
models for the secondary flow field so that the
equations can be simplified. This, then, is the
principal goal of this paper.

In order to focus upon the effect of the
secondary flow the variation of fluid viscosity
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will be ignored. The dimensionless groups
defining the fully developed flow of a fluid of
constant viscosity in an electrically heated pipe
are the Reynolds number R, the Grashof
number, G, the Prandtl number, P, the Nusselt
number, N, and the Fanning friction factor,
f, where R, G and N use the tube radius a and
G uses the temperature difference AT. Morton
[5] neglected axial density gradients and ob-
tained a perturbation solution for the tempera-
ture and velocity field valid for small values of
NG/R. E. del Casal and Gill [6] included
effects of both the axial density variation and of
the secondary flow in their perturbation solution
valid for small values of NG/PRZ Both of
these schemes are limited to very small values
of the heating rate. In order to deal with natural
convection effects of the magnitude indicated by
the correlation of Oliver [3] it is necessary to
seek a solution valid for large values of the
product GP, yet not so large that the flow is un-
stable. Temperature measurements [7], [4] and
[8] and dimensional reasoning indicate that a
thin temperature boundary layer exists near the
wall for large GP. That portion of the fluid
external to this boundary layer will be called
the core. By considering the core and the
boundary layer separately two sets of equations
which are much simpler than the original
equations are obtained. This boundary layer
problem is different from that usually en-
countered in that the conditions of the external
flow, the core, are not given a priori but are
related to the flow in the boundary layer. The
central problems to be faced are to define the
conditions in the core and to discover how the
core and boundary layer solutions are coupled.

The effect of the temperature field on the
flow depends strongly on the value of P; and
therefore, two conditions will be considered,
P=1and P — oo. It will be shown for P = 1
that the secondary motion produces a boundary
layer behavior in the primary flow similar to
that for the temperature field, while for P —
the secondary flow has no effect on the primary
flow.
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In the development of the flow model use is
made of the experimental observation [7], [4]
and [8] that the isotherms in the core are per-
pendicular to the direction of gravity. As a conse-
quence one expects that for P = 1 the secondary
motion has a large upward flow close to the
wall and a relatively small downward velocity
in the core. For P — oo horizontal isotherms
seem consistent either with large or small
fluid velocities in the core, and it is necessary
to look at the variation of the temperature in the
vertical direction to decide on a flow model for
the core.

2. EQUATIONS FOR THE FULLY DEVELOPED
REGION OF AN ELECTRICALLY HEATED
HORIZONTAL TUBE

The equations for the fully developed region
of an electrically heated horizontal tube of
radius a will now be developed. An X, Y, Z
coordinate system will be used with the origin
at the center of the pipe, the X-coordinate in
the vertical direction, and the Z-coordinate in
the direction of flow. Since the flow is fully
developed none of the velocity components are
changing in the Z-direction. The difference
between the bulk averaged temperature at any
cross section and the inlet temperature is given
as

29z

Tp—Ty=————.
B0 pocakwy

1)

Add T to both sides of (1). Then

2qz

T—To=—F"1
® 7 poCa(W)

+(T - Ty )
where (T — Tp) is a function of X and Y and
not of Z. The usual approximation that the
effect of density variations is manifested in the
buoyancy terms and not in the inertia terms
is also made. The density is assumed to vary
linearly with temperature
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L o1-pT -1 3)

Po

or after substituting (2)

P 8 2qz
Po poCak W)

The pressure will be taken as the sum of a
static pressure at the entrance to the heat
transfer section P,, and a remainder pressure
P;. Since the fluid is assumed to be isothermal
at the entrance

+T - TB>. @)

1 0P,

po 0X —
1P, ©)

Po 8Y
The velocities in the X and Y directions will be
made dimensionless with respect to a velocity %,
as yet unknown, and the velocity in the Z

direction, with respect to (W ). A dimensionless
temperature will be defined as

T'—TB
Tw_TB.

¢ =

The coordinates are normalized by the radius
of the pipe.

The dimensionless form of the energy equa-
tion is

¢ d¢  2wN 1

= Ty g2
uax+uay 7 +9?V¢ 6)
where
02 02 Al pg
2 = — — d = e
FR) +6y2 and #=P < p )

Since we are looking for a solution for which a
temperature boundary layer exists the terms on
the left-hand side of (6) representing the con-
vection of heat by the secondary flow must bs
large compared to the terms representing the
conduction of heat everywhere except in a
very small region close to the wall We will
therefore be looking for a solution for which
A is a large number. The dimensionless group
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A& is a Péclét number defined in terms of the
characteristic velocity in the core. It is not
independent but is related to the dimensionless
groups defined in the Introduction.

The dimensionless form of the Z-momentum
equation is
1 ( ow aw) a? 10P,
—flg—+r—]= - —0
P ox dy WWH>R 0z

1 2
+57W 0

The behavior of the solution of this equation for
large # depends on the value of P. For P =1
it is seen that the equation for w is similar to
that for ¢ and one can expect a solution of the
boundary layer type. For P/# - oo the convec-
tive terms on the left side of the equation will
be negligible compared to the viscous terms.
One concludes that for P/# — co the secondary
flow does not affect the velocity field in the
Z-direction.

The secondary flow is described by the
equations

ou Ov
oy ©
i u.a.g.*.v_a_i‘. —_— _...,_____a é.P_i
P\ ax  ~dy/  Pp® X
GP 2zh 1,
3 b na) e ©
1{ ov v} a o0P, 1 _,
P(“ax + ”ay) = ~ppzor Ta"?

(10)

where h is the heat-transfer coefficient defined as
q/VT. Since the equation of conservation of
mass (8) is two-dimensional, a stream function
can be defined for the secondary flow. The
equation for this stream function can be ob-
tained by eliminating the pressure between
(9) and (10)
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1 (ﬁ‘ki_é_'/iﬁ_)vzw _Grop
P\dyox oxdy TR0y
1
+§v2(v2w) (11)

The experimental observation that d¢/dy — 0
over most of the flow field implies that the
coefficient GP/#* is of larger order than the
coefficients in front of the other two terms.
Later it will be shown that for a core with small
velocities # = (GP)* and therefore that
GP/#* = (GP). For a core with large velo-
cities # = (GP)! and GP/#*> = 1. For P = 1
the assumption of large return velocities is
inconsistent with the observation that over
most of the flow field the isotherms are horizon-
tal. However for P — oo either estimate for #
implies that 6¢/dy — 0.

From equation (9) one concludes that if the
isotherms are horizontal over most of the flow
field the pressure changes are primarily hydro-
static and not affected by the secondary flow.
The viscous terms are of the same magnitude
as the buoyancy terms only in very thin regions
where the velocity gradients can be quite large.
It is of interest to note that the ratio of the
inertia to the viscous terms for large # depends
on the magnitude of P. For P = 1 the inertia
terms will be larger than the viscous terms over
most of the flow field except for a viscous
boundary layer close to the wall. For P/# - «
the convective terms are small compared to
the viscous terms over the whole cross section
of the pipe and there is no region where viscous
terms are of the same magnitude as the inertia
terms. This result is in contrast to what is
found for a heated vertical plate [9]. The
reason for this is that the extent of the flow field
for the heated horizontal tube is fixed to that
of the tube radius while the heated vertical
plate has a field of infinite extent to accommo-
date the boundary layer. As P/# — oo it is
necessary that the velocity boundary layer
cover a region that is much larger than the tube
radius in order that the inertia terms be im-
portant.
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As can be seen from (11) the term
2zh/(c{Wp,), that appears in (9) because of
density variations in the Z-direction, does not
have a direct effect on the secondary flow. It
only causes the pressure gradient in the direc-
tion of mean flow to vary over the tube cross
section. The importance of axial density varia-
tions can be estimated by differentiating (9)
with respect to Z to obtain

a*  o*P,
=2 . 12
Pp,#* 0Z0X 2 #°R (12
If (7) is differentiated with respect to x and (12)
is substituted into the resulting equation, it is
found that

19 <6w 6w)
+
dy

P ox
_ _, NG NG 1 0

Rzgi’ R 0x
By examining (13) it is seen that the following

criteria are established for neglecting density
variations

NG

—(Viw).  (13)

2NG

PR2<1 for P—-» o
(14)

It is to be noted that the axial density variation
becomes particularly important for small R;
i.e. for small throughputs. From (14) we conclude
the effect may be neglected for P — co. It will
be shown later that N = C, & for P = 1. We
conclude that axial density gradients could be
having some effect for P = 1.

By differentiating (10) with respect to Z we
find that &P, /8Z is not a function of Y. Equation
(12) can therefore be integrated to obtain

i)

where (OP,/0Z) is the average value of OP,/0Z
over the cross section.

2NGP

a 0P 0P, x
@R

- 15
poll? 8Z (13)
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3. BOUNDARY LAYER EQUATIONS

In order to treat the boundary layer flow
near the wall a coordinate system will be used
with the X-axis tangent to the pipe wall the
Y-axis perpendicular to the wall and the
Z-axis in the direction of mean flow. The usual
boundary layer assumption is made that the
pressure gradient in the X-direction is indepen-
dent of Y so that the pressure in the boundary
layer equals the pressure in the core evaluated
at the wall. Since pressure variations in the
core are hydrostatic,

X

2ZqBg . X
T, —- T, sm ————sin—
= poBa( B) acl WS
The buoyancy and pressure gradient terms in
the X-momentum equation are therefore

(16)

P, X
T ox + poBa(T — Tp) Sm —

2ZqpBg
ac{W>

The boundary layer equations may be written
as follows:

sin —=poPg(T — T) sm£

(17)

6U g; (18)
Ug%-b V%=BQ(T—TC)sinE
A A
UZ—;+V—2—§+W—;)O—C?<W>—;: 2T ey

The thermal boundary layer thickness will
be assumed of order &5 The characteristic
length and velocity in the X-direction will be
taken as @ and % ™. The characteristic velocity
in the Y-direction is then obtained from the
continuity equation as (6;/a)%*. The charac-
teristic velocity #* and characteristic length
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dr can be evaluated by assuming that in the
thermal boundary layer the viscous and buoy-
ancy terms in the X-momentum equation and
convection and conduction terms in the energy
equation are of the same magnitude

or = aPG)™*
@=L (Gpy 22
L G/P) @)

u
v+=t_ (G
poa( /P*)

The dimensionless forms of the energy balance
and the boundary conditions on ¢ are

o @  WN 9

+ -7 + v =

ot 5T T eer a2 @)
o=1 at y*t=0
¢=¢. atlarge y* (24)

The heat flux to the wall and therefore the
Nusselt number can be evaluated as follows:

N = C,(PG)* (25)

_1fae
n) dy
0

It will be shown later for P = 1 that W/(W) is
of order unity and N is of order G* so that
(W/{W)>)N is of order G Since W is not
influenced by the secondary flow for P/# — o
the order of W/{W) in the thermal boundary
layer is estimated as dy/a. The Nusselt number
is of order a/dy so for P/® — oo, (W/{W)>)N is
of order unity. Therefore, as PG — co the term
involving the convection of heat in the Z-direc-
tion becomes negligibly small in the thermal
boundary layer, and it is concluded that the
secondary flow controls the rate of heat transfer.
The constant C, appearing in (25) in general is
a function of the parameters of the problem.
It will be a constant of order unity if ¢ is only
a function of x* and y*..This requires that
u* and v* in the thermal boundary layer and

dx*

y*=0

Ci= (26)
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the dimensionless core temperature evaluated
at the wall, ¢, be independent of the parameters
of the problem. This will be shown to be the
case for P/®# — oo if the effect of axial density
variation can be neglected.

Before considering the equations for u* and
v* it is necessary to make some general com-
ments about the secondary flow. By using the
same type of reasoning as for the heated vertical
plate [9] it can be shown that if a region exists
in which the inertia and viscous terms are of
the same magnitude its extent, d,, is given as
(6,/67) = PY. For P=1 the ratio (5,/0y) = 1
and as shown in the previous section inertia
terms dominate over the viscous terms in the
core. One concludes that for P = 1the boundary
layer is a region where viscous, buoyancy and
inertia terms are of the same magnitude. In the
outer region of the boundary layer, inertia
terms dominate since it is necessary to match the
boundary layer and core behaviors.

Now let us consider the case of P — oo for a
fixed large value of PG, or, according to (22), a
fixed small value of (§;/a). A region in which
the viscous and inertia forces are of the same
magnitude would have to be larger than the
pipe radius. Clearly this is impossible so the
flow at the edge of the thermal boundary layer
must be matched to a flow in the core in which
viscous forces dominate over inertia forces.
From (28) it can be seen for P/# — oo that
d*u*/0y*? =0 in the matching region. The
velocity gradient in the matching region is of
order unity when normalized with respect to
core parameters % and a, i.e. du/dy is of order
unity. The following relation may be written
for the matching region

out  Or U ou
vt awutoy

The ratio #/% * is of order unity or less. Since
ou/0y is of order unity and since d;/a — 0, it
follows that du*/dy* -0 in the matching
region. Therefore as P/# — oo the inflection
point in the u* velocity profile that corresponds
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to the “‘edge” of the temperature boundary
layer must be approaching either a maximum
or a minimum in the secondary flow. If it
is approaching a maximum then there is a
large return flow in the core. If it is approaching
a minimum the velocities in the return flow are
much smaller than in the upward flow near the
wall. In contrast to the heated vertical plate
more than one inflection point can exist in the
velocity profile in the heated tube because of the
return flow in the core. It will be assumed that
the flow is simple enough that no more than
two inflections can exist. If there is only one
inflection, the matching region will approach
the maximum velocity as P/# — oo as indicated
in Fig. 1. The extent and velocity of the upward

Velocity
e

Temperature
/

Fic. 1. Velocity and temperature profiles for a heated
horizontal tube having a large return flow in the core.
Prandtl number is large.

moving flow and return would then be of the
same magnitude. Figure 2 shows that the
matching region would be near the minimum
if two inflections exist in the velocity profile.
The inflection point would approach the mini-
mum, and the minimum would approach zero
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Temperoture

Velocity

~

14

Fi1G. 2. Velocity and temperature profiles for a heated
horizontal tube having a small return flow in the core.
Prandt]l number is large.

as P/# — co. The upward moving flow would
be confined to the thermal boundary layer
and therefore the return flow must occupy a
greater portion of the tube and have a much
smaller velocity than the upward flow.

If (22) is used to normalize the boundary
layer equations describing the secondary flow,
(18) and (19), the equations and boundary
conditions become

out vt
i 27)
1 ou”* ou” .
P ( e ay+> = (¢ gJsinx”
62 +
+ V’iz (28)
ut =0t =0,¢=1 at y* =0
¢ =¢, atlarge y* 29)

If the upflow is confined to the thermal boundary
layer, it is appropriate to assume u* = O at large
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y* since for large GP the return velocities will
be negligible compared to the boundary layer
velocities. For a profile at P/# — oo, which
would have a large return flow, it is appropriate
to apply (28) only within the thermal boundary
layer since the rest of the flow would not be of
the boundary layer type. The boundary condi-
tion would then be u* is a maximum at large
y*. For P/# — oo the inertia terms in (28) are
negligible and the differential equations and
boundary conditions describing the variation
of u* and v* within the thermal boundary layer
contain no parameters of the problem provided
¢. is a function only of x* and y*.

To complete the discussion of the boundary
layer equations the Z-momentum balance will
now be treated. As was shown in the previous
section viscous terms dominate for P/# — oo
and therefore, a boundary layer analysis is not
appropriate. For P = 1 inertia terms dominate
in the core and a boundary layer exists near the
wall where the inertia and viscous terms are of
the same magnitude. The velocity with which
to normalize the W-term in the boundary
layer is {(W}. The dimensionless form of (20)
is then given as

1 (w wt LWt _ & 0P
P\ ox* dyt) uGP)} oz
iPw*
wt=0 at y*=0
wt =w, atlargey®* (1)

The term w, is the solution of the equations
describing the core flow evaluated at the wall.
A force balance that equates the average axial
pressure drop to the resisting force at the wall
gives

-G

dx* (32)

y*=0

2#( W> PGy j
0
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The Fanning friction factor is defined as
aloP,/0Z)
- 33
S === (33
so from (32)
_ . PGy
f=0 g (34
where
2 fow* +
C2 = ;ng—"_ y+_0dx . (35)

If (32) is substituted into (30) it is seen that the
first term on the right side of (30) is negligible if
the variation of 0P,/0Z over the cross section
due to axial density gradients is not much
larger than {0P/0Z). Then the equation des-
cribing the variation of w* in the boundary
layer is the same as the energy equation (23).

4. CORE EQUATIONS

Now that the parameterization of the boun-
dary layer equations has been completed it is
possible to return to the discussion of the equa-
tions describing flow in the core. If the upflow is
confined to the thermal boundary layer the
characteristic velocity of the fluid in the core can
be calculated by equating the mass flow in the
thermal boundary layer, §,% *, to the mass flow
down in the core, a% sin x*.

. 3
apo(G/P)

= (GP)*.

If the extent of the regions of upflow and down-
flow are the same, the characteristic velocity for
the core is the same as that for the thermal
boundary layer.

(36)

=4 %
apq £ /)

2 = (GP)%.

(37

(38)
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The secondary flow in the core is described by
(11). The first term on the right side of this
equation is the production of vorticity while
the second is the diffusion of vorticity. For
P =1 and large GP the diffusion terms are
small in comparison to the convection terms
while for P/# — oo the diffusion terms dominate
the convection terms. Even though 0¢/6y — 0,
the production of vorticity cannot be neglected
since the coefficient in front of d0¢/dy is large.
The solution of (11) seems to require a knowledge
of the variation of ¢ in the core to a high order
of accuracy. It is not evident how to proceed
with this solution. Fortunately the calculation
of the boundary layer properties, the heat
transfer rate and the first order variation of ¢ in
the coredoes not depend on a detailed knowledge
of the stream function in the core.

Since # is a large number, the equation for the
variation of ¢ in the core, (6), becomes

o ¢  2wN

“wtS T T A

Making use of (25) and the observation that
d¢p/0y — 0 in the core

(39)

08 _ _ 2wCy(GP)

ax R (40)

For the case of large return flow % is given by
(37). Then (40) indicates d¢/0x — 0 and it is
expected that the core is isothermal. That is,
¢. = 0. If the return flow in the core is small,
4 is given by (36) and

- 2wC,. (41)

U—=

0x

Since C, is a constant of order unity it is con-
cluded from (41) that the variation of the core
temperature in the vertical direction is of order
unity if the upward flow is confined to a small
region close to the wall. Since 0¢/0x is inde-
pendent of y, (41) can be integrated over the
cross section at a fixed value of x.
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V1= x?) V1 =x2)

o
i J udy = - C,
0

A mass balance at any height in the pipe reveals
that

wdy. (42)

V1= x?) o
- (f) udy= fu*dy* =B* (43)
)]

After substituting in (42),
V(1< x2)

B+a—(é=cl

ox wdy.

(44)
0

The above differential equation is dependent on
the secondary flow in the core only insofar as it
is affecting the integral involving w. Since the
mixed average value of ¢ in the core must equal
zero, an integral condition on ¢ can be given
which has the same role as specifying a boundary
condition for (44).

1 J(1-x?)
17

0

wodydx = 0. 45)

For P/# — o© equation (7) can be integrated
to give

w=2l —x*—y?
1 NG

i

—x2 —yHcosx./(a® + y?). (46)
If the effect of axial density gradients can be
ignored, the second term on the right side of
(41) is zero, and the variation of ¢ in the core is
independent of the secondary flow and of the
parameters of the problem.

For P < GP the viscous terms in (7) may be
neglected and if (15), (32) and (35) are substituted

1(u6w+ g!
P\ 0x Uay

_ C,PG}  2NG y
TR RRP

én
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2C,G

u—+v—=0C, —
Since the variation of u and v in the core is not
known, it seems best at present to rely on
experiment to determine an approximate solu-
tion to (48). The experiments of Y. Mori and
his co-workers [7] suggest that for P =1
dw/dy - 0 in the core. This is not surprising
since (48) and (39) are quite similar. It follows
that w may be approximated by

M J =) (c2 = g%lﬁx) (49)

Bt —=
0x

Since the average value of w equals unity the

following integral condition can be established :

1 J1-x%)
{7 wdydx=1 (50)
-1 [}

5. STATEMENT OF BOUNDARY LAYER
PROBLEM, P/# — o

The equations developed in the previous
sections relating to the solutions of the boundary
layer problem will now be summarized for
P/# — oo and for the case of negligible effect of
axial density gradients. It should be recalled that
x and y are core coordinates that are aligned
with the vertical and horizontal and which are
made dimensionless with respect to the pipe
radius. The term x* is the boundary layer co-
ordinate tangent to the wall. It is dimensionless
with respect to a. The perpendicular distance
from the wall made dimensionless with respect
to 6 =a(PG) * is designated by y*. The
coordinates x* and x are related as follows:

(1

No boundary layer solution is needed to define
the variation of the Z-component of velocity for
P/® — oo since it is unaffected by the secondary
flow.

x =—cosx™.

w=21—x*—y?. (52)
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The pressure drop is given by Poiseuille’s law.

When the velocity boundary layer is confined
to the thermal boundary layer as depicted in
Fig. 2, theboundarylayerequationsareasfollows:

o oo ¢
+ Y9 + Y99 _Y9Y
x* TV ot aye 53)
out  ov”
" + 6y—* =0 27
2, +
27‘1—2 +(p—d)sinxt =0  (54)
ut=v*=0, ¢=1 at y*=0
ut =0, ¢=¢.  atlarge y* (55)

The core temperature evaluated at the wall, ¢,,
is given by the following equations:

o6 V(1 —x?)
+ c _ .
B 7 C, wdy 44)
[1]
B* = [u* dy* @3)
[1]
1 J(1-x?)
] (( we, dydx == 0. 45)

The Nusselt number can be calculated from
the solution of the above equations for the
thermal boundary layer.

N = C,(PG)*

®

1{ ¢
SRS

[}

25)

dx*
y*t=0

(26)

Since no parameters of the problem appear in the
differential equations and boundary conditions,
it may be concluded that C, is a number of order
unity. The value of C, is determined by solving
the above equations. This solution requires an
iteration procedure. One possibility is to assume
the function ¢,(x) and then solve (53), (27), (54)
and (55). From this solution a new ¢/x) can
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be calculated from (52), (44), (43) and (45) and
the procedure is then repeated.

Another method of iterating is initially to
assume a value of C,. If the core temperature at

X = O ic napA ac the rofarance tammneratnre tha
A7 2T AT LERAW AWIVIWwiivA ‘vwfwl“‘ul\l’ 1iiw

boundary condition for (44) is ¢, = 0 at x = 0.
The differential equations for the temperature
variation in the core and the boundary layer
can then be solved simultaneously. After the
solution has been completed, the reference
temperature is calculated from (45) and a new
value of C, from (26). The calculation is then
repeated.

If the regions of upward and downward flow
are of the same magnitude as shown in Fig. 1,
the core temperature ¢, is equal to zero. The
defining differential equations for the thermal
boundary layer are as follows

+ 00 . ¢
ox* + 6y+ 5}75 (56)
out ot
Fyes + i 4] 27
62 +
3 +2+¢s1nx =0 (57)
T=pt=0, ¢=1 at y* =0 (58)
+
%; =0, ¢=0 atlarge y*

Again, since no parameters appear in the above
set of differential equations, C, is a constant of
order unity. The value of C, will be the same as
that calculated for a heated cylinder in a fluid of
infinite extent.

6. STATEMENT OF BOUNDARY LAYER
PROBLEM, P =1

The boundary layer equationsfor P = lareas
follows:

L0 L0 _ ¢
WSt 5e = 5y (56)
ow ow 2w
+ + —
oxt " ° ay*  ay*? 59

D. P. SIEGWARTH, R. D. MIKESELL, T. C. READAL and T. J. HANRATTY

out ot
Fes + @; = 0 27
ou* ou*
+ + G4
ax* t oyt
ot
=(¢p — P)sinx™ + —; R T3 (60)
ut = =w=0, ¢=1 at y*=0
ut =0, w=w,
¢ =9, atlarge y™. (61)

The equations describing w,(x) and ¢(x) aze as
as follows:

' ?: = %) C, - g—%‘—;x 49)
B* %ﬁ =Cyw /(1 — x%) (62)

i Wepe/(1 — x)dx =0 45)

jl wo /(1 — x)dx = 1. (50)

The above equations are based on an approxi-
mation, dw,/dy = 0, which is justified only by
experimental observation. The equations for the
Nusselt number and friction factor are

G*
f—Cz—l{ (34)
CZ=EJ-‘31‘; dx* 35)
4 Y ly+=0
0
N =C,Gt (25)
1] o¢ .
_1ljoe 2

The coefficients C, and C, can be calculated by
solving the thermal boundary layer and core
equations for ¢ and w. The solution of these
equations requires an iterative procedure where-
by one initially either assumes w{x) and ¢(x)
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or assumes C, and C,. If axial density gradients
can be neglected, no parameters appear in the
differential equations and boundary conditions
defining w and ¢, and C, and C, are constants
of order unity.

7. APPROXIMATE SOLUTION FOR P/# — oc AND
FOR NEGLIGIBLE EFFECT OF AXIAL DENSITY
GRADIENTS

A solution will now be presented for P/Z —» «©
and for negligible effect of axial density gradients.
Experiments by Siegwarth [8] with ethylene
glycol showed a large variation of ¢ in the core
in the vertical direction. These results indicate
that the equations developed for the case of
small core velocities are the appropriate ones.
These equations will be solved approximately
in that only the integral form of (§3) will be
satisfied,

4% 4%

d r s ou*
aﬁf“ it I—xr
[ [
(63)

On the basis of the arguments presented
following equation (26), the thickness of velocity
boundary layer will be taken equal to the thick-
ness of the thermal boundary layer. The following
expressions for the velocity and temperature,

t=—(1-¢Ja*?sin x*
3 y 1 y~+ 2 IG+)3
" %47 2(’2"‘ Ay

1 (y* ‘il

7.-( )
y* y

~w—m(j‘

satisfy (57) and the boundary conditions,

d-}

0

+

p=1-31-

(65)
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wt=0, ¢=1, g;d’ =0 at y*=0
+
WG k=0 =0
at y* =A% (66)
They will satisfy (63) if A* is defined by the
following differential equation:
da*

dx*

= [—000256(1 — ¢4 ?sin x* §¢+

~ 0:001694(1 — ¢,)24*3cos x* + 3d i d")]

/0-00508(1 — ¢,)24*2sinx*.  (67)

The boundary condition for the solution of
(67) is obtained by assuming symmetry. Equa-
tion (67) is solved at x* = 0 using d4*/dx* =
d¢./dx* = 0 to obtain

(1—¢)4* =649 at x*=0. (68)

From the definition of ¢ and y* it follows from
(25) that the local Nusselt number is [3(1 — ¢.)/
A4*](GP):. The constant C, appearing in (25)
is therefore given as

2031 - 4,
C1 = ;J‘;‘(—A;—"p‘}dx*’.
0

The dimensionless volumetric flow in the boun-
dary layer is calculated from (64) using the equa-
tion

(69)

A(-

= utdy* (70)

0
Equations (52) and (70) are substituted into (44)
and the resulting differential equation is written
in terms of boundary layer coordinates by
using (51) to obtain the equation defining how
¢, varies with x*.
d¢c

000595(1 — pJa*2 -2

= 561(1 —cos? xR, (71)
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The integral condition (45) is used instead of a
boundary condition for (71).

Equations (67), (68), (69), (71) and (45) define
C, and the variation of 4* and ¢, with x*.
An iteration procedure has been used to solve
these equations on the computer [11]. It is
found that

N = 0-471(GP)%. (72)

The computed variation of B*, 4* and ¢, with
0 is shown in Table 1. It is to be noted that the
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Figs. 4 and 5 with the measurements made by
Siegwarth [8] at (GP)* = 513 and P = 70-7.
It is to be noted that the measured wall tem-
peratures at the top and the bottom of the tube
are not the same since the tube wall did not
supply a good enough conductive path to
equalize the temperature completely.

In Fig. 6 the calculated variation of the local
Nusselt number around the circumference of
the tube is compared with measurements of the
temperature gradient at the wall obtained by

Table 1. Results of calculations for P — «c

x* 0 x
0 0 —1-000
0-200 11-46° —0980
0-400 22:92° -0921
0-600 34-38° —0-825
0-800 45-85° —0-697
1-000 57-31° —0-540
1-200 68-77° —-0-362
1-400 80-23° —0-170
1-600 91-69° 0029
1-800 103-15° 0-227
2000 114-61° 0416
2:200 126-07° 0-588
2400 137-54° 0-737
2-600 149-00° 0-857
2-800 160-40° 0942
3-000 171-92 0990
3130 179-37 1-000

dimensionless boundary layer thickness is rela-
tively constant from ¢ = 0° to 6 = 145°. After
145° it increases rather rapidly. The shape of the
velocity and temperature profiles predicted by
the assumed relations (64) and (65) are shown in
Fig. 3. It is to be noted that the temperature
profile has a minimum at a value of y* /6™ less
than unity. The measurements and computer
solutions of Siegwarth [8] indicate a similar
behavior over a large portion of the tube
circumference.

These calculations are in good agreement with
results of experiments performed with ethylene
glycol [8, 11]. Calculated horizontal and verti-
cal core temperature profiles are compared in

At é. B*
577 —0-595 0
577 —0-595 0-362
581 —0-591 0-723
585 —0-576 1062
590 —0-540 1350
594 —0-476 1-498 Max
597 —-0-376 1621 B*
598 —0-241 1-560
599 —-04073 1-375
601 0121 1-104
606 0-332 0-802
6-20 0-543 0-524
661 0733 0-310
773 0-863 0-187
10-79 0918 0-204
17:19 0923 0-328
41-84 0923 0-388
0-450

Siegwarth [8] at (GP)* = 51-3 and P = 707.
The agreement is within the accuracy of the
measurements. The local Nusselt number de-
creases because of an increase in the thickness
of the temperature boundary layer or because
of a decrease in the temperature drop through
the boundary layer brought about by changes in
the core temperature. The change of the local
heat-transfer rate can therefore be explained
in terms of the calculated results in Table 1.
The local heat transfer rate does not vary
much from 6 =0° to 6 = 60° because the
boundary layer thickness and ¢, are relatively
constant over this region. The decrease in the
local heat transfer rate from 6 = 60° to § = 145°
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F16. 3. Temperature and velocity profile assumed for the
boundary layer.
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F16. 4. Comparison of calculated and measured horizontal
temperature profiles.

appears to be mainly due to the large increase in
¢.. The decrease from 6 = 145° to 6 = 180° is
due to changes both in the boundary layer
thickness and in ¢,.

Measured values of the average heat transfer
coefficient around the wall of the pipe made by
Readal [11] for NG/PR? = 0-14-0-67 are com-
pared with equation (72) in Fig. 7. The physical
properties are evaluated at the bulk averaged
temperature of the fluid. This would be close
to the average temperature in the boundary
layer in the region from 8= 6° to 8 = 60°
where a large portion of the heat transfer
occurs. If the wall temperature had been used,
the measurements fall as much as 15 per cent
below the calculated line.

8. CONCLUDING REMARKS
The entire analysis presented in this paper is
based on the assumption of the existence of a
temperature boundary layer. Although a large
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Fig. 7. Comparison of calculated and measured Nusselt
numbers.

value of GP insures its existence over most of the
circumference, it is possible that the boundary
layer assumption breaks down at the top of
the tube where T,, — T, can be quite small.
In this region the Conduction of heat could be
Amportant in the core as well as close to the
wall. However, it is not likely that this will
cause any serious error in the calculation of the
heat-transfer coefficient since as shown in Fig
6, the heat transferred to the fluid is relatively
small at the top of the tube.

A case where the non uniformity of the boun-
dary layer solution could be more significant
is that of a wall boundary condition of constant
heat flux rather than constant temperature. If
convection effects become small in the top of the
tube, then a very large temperature gradient will
exist in the top portion of the core in order to
accommodate the heat flux. This large change
in T, will be accompanied by an equally large
variation in T, so T, — T, is small.

The equations presented in this paper have
been developed by using the experimental obser-
vation that the temperature isotherms in the
core are horizontal. This implied that for P = 1
the core velocities are relatively small and that
for P — co they could be either small or large.
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The recent experiments by Siegwarth with ethyl-
ene glycol showing a relatively large variation
of core temperature in the vertical direction
seem to rule out a solution for P —» co with large
core velocities. Therefore the equations might
have been developed on the more restrictive
condition of small core velocities. This reliance
on experimental observation is not completely
satisfactory, and it is desirable to develop
theoretical arguments for assuming a particular
flow condition in the core.
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Résumé—Les variations de la masse volumique d’un fluide s’écoulant dans un tube horizontal chauffé
peut provoquer un écoulement secondaire ainso que des variations dans le gradient axial de pression a
travers la section droite du tube. L’effet de I’écoulement secondaire sur le champ de température et sur
I’écoulement primaire & la sortie d’un long tube chauffé électriquement ayant des parois épaisses de con-
ductivité élevée est analysé dans le cas d'un nombre de Grashof-Prandtl élevé, pour lequel il existe prés de
la paroi une couche limite thermique mince. On expose un modéle pour le champ d’écoulement qui est
cohérent avec I'observation expérimentale que les isothermes sont horizontales sur la plus grande longueur
du tube. On trouve par un raisonnement dimensionnel que 1’écoulement secondaire contréle le flux de
chaleur. Pour P = 1, ’écoulement primaire montre aussi un comportement de couche limite tandis que,
pour P — oo, P’écoulement primaire est indépendant de 1'écoulement secondaire. Pour une viscosité
constante et un nombre de Prandtl infini, le nombre de Nusselt est directement proportionnel a la racine
quatriéme du produit de Grashof pour le nombre de Prandtl.

N = C,(GP}

On a calculé par les méthodes intégrales que C; = 0,471. Un bon accord est obtenu entre les calculs basés
sur le modéle proposé et I’expérience.

DER EINFLUSS VON S_EKUNDARSTROMUNGEN AUF DAS TEMPERATURFELD UND DIE
PRIMARSTROMUNG IN EINEM BEHEIZTEN HORIZONTALEN ROHR.

Zusammenfassung—Dichteanderungen in einem Fluid, das durch ein beheiztes horizontales Rohr strémt,
konnen sowohl Sekundérstrémungen als auch Anderungen des axialen Druckgradienten {iber den Rohr-
querschnitt verursachen. Der Einfluss der Sekundérstrémung auf Temperaturfeld und Primérstrémung
am Auslass eines langen elektrisch beheizten Rohres mit dicken Winden hoher Leitfahigkeit wird unter-
sucht fiir dem Fall grosser Grashof-Prandtl Zahlen, bei denen eine diinne Temperaturgrenzschicht an
der Wand existiert. Es wird ein Modell fiir das Stromungsfeld angenommen, das konsistent ist mit der
experimentelien Beobachtung, dass namlich iiber den grossten Teil des Rohres die Isothermen horizontal
verlaufen. Aus Dimensionsbetrachtungen ergibt sich, dass die Sekundérstrémung verantwortlich ist fiir
die Grosse des Wirmestroms. Fiir P = 1 zeigt die Primdrstromung Grenzschichtverhalten, wihrend fiir
P - v die Primirstrémung von der Sekundirstromung abhingt Fiir konstante Viskositit und sehr
grosse Prandrlzahlen ist die Nusseltzahl direkt proportional der vierten Wurzel des Produkts aus Grashof-
und Prandtizahl.

N = C,(G. P}

Aus integralen Losungsmethoden ergibt sich die Konstante zu C; = 0,471. Die Berechnungen, denen das
angenommene Modell zugrunde liegt, stimmen sehr gut mit dem Experiment iiberein.

BJIMAHUE BTOPHUYHOIO TEYEHUA HA TEMIHEPATYPHOE [HOJE U
OCHOBHOM IIOTOK B HAI'PETOH 1I'OPU3OITAJIBHON TPVBE

AnnoTanA—l3MeHeHIIA TIOTHOCTIL KIAKOCTIH, TeKYHUell B HarpesaeMoit ropusOHTAILHOMN
TpyGe, MOrYT BHI3BATh BTOPUYHUE TEUCHNC, A TAIGiie TPUBOMAT K HIMEUEHUsM OCEBOTO
Ppaj¥eHTa JAaBJICHIA 10 CeYeHUI0 TPYyOBl. ANANUBHPYCTCA BIMAHNE BIOPHUYHOTO TeUelUA Ha
TeMIepaTypHOe fojie U OCHOBHOM IIOTOK Ha BBIXO{e 113 INIMHHON paekTpuiecku oGorpeBaevoit
TPYOH € TOJICTHIMIL CTEHKAMM BBHICOKOU I1POBOJMMOCTI IS Goaprunoroe uyuecaa Ilpaupras—
Cpacroda, xorga BOAUSH CTEHKU CYLIECTBYCT TOHRNIT TeMNCPATYPHBIH HOrPaHNYHbIH CIO0I.
PaspafoTana Mojelb [M0JAA NMOTOKA, COOTBETCTRYIONLIA DKCHEPAMENTAIBII0 OOHADYIKCHHOMY
daKTy TFOPUROHTANBHOCTH H30TepM Ha Ooapmeidf uactu TpyGu. Meromom pasvepiioctTeit
HAifIeHo, dYTO BTOPHUUHBIA IOTOR PeryaupyeT HHTeHCHUBHOCTb Ternaoofmena. llpu P =
OCHOBHOIf [IOTOK 3aBMCUT OT PasBHTUA HOTPAHHYHOTO CI0A, B TO BpeMsi kar npu P — o ou
He BABUCHT OT BTOPUYHOTO TedeHusi. [IJIfi MOCTUAHHON BASKOCTH M GECKOHEUHOTO ‘HIC./ i
Ipauaras uueao HycceabTa NpsAMO TPONOPUHOHANBHO KOPHIO “eTRepTolf crerei:  nn
npoussefenus uncena I'pacroda u Hpanmrin

N = Ci(G . P}

uTerpaJibHBIMUM  MeTOfaMM  oneHeno suadenne C = 0,471. Mempy OCHOBAaHHBIMI  Ha
MPeIIOAEHHON MOTENH PAcueTaMi 1 DHCIIePUMEHTAMH [I0JIy4eH0 X0pomlee COOTRETCTRHE.



